1,198 research outputs found

    Efficient computation of the Shapley value for game-theoretic network centrality

    No full text
    The Shapley value—probably the most important normative payoff division scheme in coalitional games—has recently been advocated as a useful measure of centrality in networks. However, although this approach has a variety of real-world applications (including social and organisational networks, biological networks and communication networks), its computational properties have not been widely studied. To date, the only practicable approach to compute Shapley value-based centrality has been via Monte Carlo simulations which are computationally expensive and not guaranteed to give an exact answer. Against this background, this paper presents the first study of the computational aspects of the Shapley value for network centralities. Specifically, we develop exact analytical formulae for Shapley value-based centrality in both weighted and unweighted networks and develop efficient (polynomial time) and exact algorithms based on them. We empirically evaluate these algorithms on two real-life examples (an infrastructure network representing the topology of the Western States Power Grid and a collaboration network from the field of astrophysics) and demonstrate that they deliver significant speedups over the Monte Carlo approach. Fo

    Retinal Changes in Transgenic Mouse Models of Alzheimer's Disease.

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder, the most common form of dementia. AD is characterised by amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) in the brain, in association with neuronal loss and synaptic failure, causing cognitive deficits. Accurate and early diagnosis is currently unavailable in lifespan, hampering early intervention of potential new treatments. Visual deficits have been well documented in AD patients, and the pathological changes identified in the brain are also believed to be found in the retina, an integral part of the central nervous system. Retinal changes can be detected by real-time non-invasive imaging, due to the transparent nature of the ocular media, potentially allowing an earlier diagnosis as well as monitoring disease progression and treatment outcome. Animal models are essential for AD research, and this review has a focus on retinal changes in various transgenic AD mouse models with retinal imaging and immunohistochemical analysis as well as therapeutic effects in those models. We also discuss the limitations of transgenic AD models in clinical translations

    Cognitive Structure and Processing During Cognitive Behavioral Therapy vs. Pharmacotherapy for Depression

    Get PDF
    Background: Evidence has converged to suggest that cognitive processing and content covary with depression severity, whereas indices of cognitive structure exhibit greater stability and promise as markers of vulnerability for depression. The objective of the current study was to investigate the temporal dynamics and causal role of cognitive structure and processing in treatment for depression. Method: A total of 104 patients with major depressive disorder were randomized to receive cognitive behavioral therapy (CBT; n = 54) or pharmacotherapy (n = 50). Patients completed the Hamilton Depression Rating Scale (HAM-D), Beck Depression Inventory-II (BDI-II), Psychological Distance Scaling Task (PDST), Redundancy Card-Sorting Task (RCST), and Self-Referent Encoding Task (SRET) before, during, and after treatment. Results: Most cognitive indices exhibited change over treatment to a similar degree across both treatments. Evidence for the mediating role of cognition was limited, and not specific to CBT. Discussion: Results suggest that both cognitive structure and processing may be amenable to change, by both CBT and pharmacotherapy. The role of cognitive structure in the course of depression may require qualification

    Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors

    Full text link
    On the basis of the quasiclassical theory of superconductivity, we obtain a formula for the local density of states (LDOS) around a vortex core of superconductors with anisotropic pair-potential and Fermi surface in arbitrary directions of magnetic fields. Earlier results on the LDOS of d-wave superconductors and NbSe2_2 are naturally interpreted within our theory geometrically; the region with high intensity of the LDOS observed in numerical calculations turns out to the enveloping curve of the trajectory of Andreev bound states. We discuss experimental results on YNi2_2B2_2C within the quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure

    Electronic structure and optical properties of ZnX (X=O, S, Se, Te)

    Full text link
    Electronic band structure and optical properties of zinc monochalcogenides with zinc-blende- and wurtzite-type structures were studied using the ab initio density functional method within the LDA, GGA, and LDA+U approaches. Calculations of the optical spectra have been performed for the energy range 0-20 eV, with and without including spin-orbit coupling. Reflectivity, absorption and extinction coefficients, and refractive index have been computed from the imaginary part of the dielectric function using the Kramers--Kronig transformations. A rigid shift of the calculated optical spectra is found to provide a good first approximation to reproduce experimental observations for almost all the zinc monochalcogenide phases considered. By inspection of the calculated and experimentally determined band-gap values for the zinc monochalcogenide series, the band gap of ZnO with zinc-blende structure has been estimated.Comment: 17 pages, 10 figure

    Tumor Necrosis Factor - Related Apoptosis-Inducing Ligand (TRAIL) promotes angiogenesis and ischemia- induced neovascularization via NADPH Oxidase 4 (NOX4) and Nitric Oxide - dependent mechanisms

    Get PDF
    Background — Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has the ability to inhibit angiogenesis by inducing endothelial cell death, as well as being able to promote pro- angiogenic activity in vitro. These seemingly opposite effects make its role in ischemic disease unclear. Using Trail_/_ and wildtype mice, we sought to determine the role of TRAIL in angiogenesis and neovascularization following hindlimb ischemia. Methods and Results — Reduced vascularization assessed by real-time 3-dimensional Vevo ultrasound imaging and CD31 staining was evident in Trail_/_ mice after ischemia, and associated with reduced capillary formation and increased apoptosis. Notably, adenoviral TRAIL administration significantly improved limb perfusion, capillary density, and vascular smooth-muscle cell content in both Trail_/_ and wildtype mice. Fibroblast growth factor-2, a potent angiogenic factor, increased TRAIL expression in human microvascular endothelial cell-1, with fibroblast growth factor-2-mediated proliferation, migration, and tubule formation inhibited with TRAIL siRNA. Both fibroblast growth factor-2 and TRAIL significantly increased NADPH oxidase 4 (NOX4) expression. TRAIL-inducible angiogenic activity in vitro was inhibited with siRNAs targeting NOX4, and consistent with this, NOX4 mRNA was reduced in 3-day ischemic hindlimbs of Trail_/_ mice. Furthermore, TRAIL-induced proliferation, migration, and tubule formation was blocked by scavenging H2O2, or by inhibiting nitric oxide synthase activity. Importantly, TRAIL-inducible endothelial nitric oxide synthase phosphorylation at Ser-1177 and intracellular human microvascular endothelial cell-1 cell nitric oxide levels were NOX4 dependent. Conclusions — This is the first report demonstrating that TRAIL can promote angiogenesis following hindlimb ischemia in vivo. The angiogenic effect of TRAIL on human microvascular endothelial cell-1 cells is downstream of fibroblast growth factor-2, involving NOX4 and nitric oxide signaling. These data have significant therapeutic implications, such that TRAIL may improve the angiogenic response to ischemia and increase perfusion recovery in patients with cardiovascular disease and diabetes

    Modeling Basal Ganglia for understanding Parkinsonian Reaching Movements

    Full text link
    We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with the correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the Temporal Difference error, striatum as the substrate for the Critic, and the motor cortex as the Actor. A key feature of this neurobiological interpretation is our hypothesis that the indirect pathway is the Explorer. Chaotic activity, originating from the indirect pathway part of the model, drives the wandering, exploratory movements of the arm. Thus the direct pathway subserves exploitation while the indirect pathway subserves exploration. The motor cortex becomes more and more independent of the corrective influence of BG, as training progresses. Reaching trajectories show diminishing variability with training. Reaching movements associated with Parkinson's disease (PD) are simulated by (a) reducing dopamine and (b) degrading the complexity of indirect pathway dynamics by switching it from chaotic to periodic behavior. Under the simulated PD conditions, the arm exhibits PD motor symptoms like tremor, bradykinesia and undershoot. The model echoes the notion that PD is a dynamical disease.Comment: Neural Computation, In Pres

    PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders

    Get PDF
    In the extra dimension models of ADD and RS we study the dependence of the various parton distribution functions on observable of Drell-Yan process to NLO in QCD at LHC and Tevatron energies. Uncertainties at LHC due to factorisation scales in going from leading to next-to-leading order in QCD for the various distributions get reduced by about 2.75 times for a μF\mu_F range 0.5 Q<μF<1.5 Q0.5 ~Q < \mu_F < 1.5 ~Q. Further uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.Comment: 27 pages, 11 figures, the version to appear in European Physical Journal

    Topical curcumin nanocarriers are neuroprotective in eye disease

    Get PDF
    Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology

    Origin of magnetoelectric behavior in BiFeO3_3

    Full text link
    The magnetoelectric behavior of BiFeO3_3 has been explored on the basis of accurate density functional calculations. The structural, electronic, magnetic, and ferroelectric properties of BiFeO3_3 are predicted correctly without including strong correlation effect in the calculation. Moreover, the experimentally-observed elongation of cubic perovskite-like lattice along the [111] direction is correctly reproduced. At high pressure we predicted a pressure-induced structural transition and the total energy calculations at expanded lattice show two lower energy ferroelectric phases, closer in energy to the ground state phase. Band-structure calculations show that BiFeO3_3 will be an insulator in A- and G-type antiferromagnetic phases and a metal in other magnetic configurations. Chemical bonding in BiFeO3_3 has been analyzed using various tools and electron localization function analysis shows that stereochemically active lone-pair electrons at the Bi sites are responsible for displacements of the Bi atoms from the centro-symmetric to the noncentrosymmetric structure and hence the ferroelectricity. A large ferroelectric polarization (88.7 μ\muC/cm2^{2}) is predicted in accordance with recent experimental findings. The net polarization is found to mainly (>> 98%) originate from Bi atoms. Moreover the large scatter in experimentally reported polarization values is due to the large anisotropy in the spontaneous polarization.Comment: 19 pages, 12 figures, 4 table
    corecore